Prediction, Learning, and Games预报,学习与游戏程序 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线

Prediction, Learning, and Games预报,学习与游戏程序精美图片
》Prediction, Learning, and Games预报,学习与游戏程序电子书籍版权问题 请点击这里查看《

Prediction, Learning, and Games预报,学习与游戏程序书籍详细信息

  • ISBN:9780521841085
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2006-03
  • 页数:104
  • 价格:572.00
  • 纸张:胶版纸
  • 装帧:精装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看

内容简介:

This important new text and reference for researchers and students in machine learning, game theory, statistics and information theory offers the first comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections. Old and new forecasting methods are described in a mathematically precise way in order to characterize their theoretical limitations and possibilities.


书籍目录:

Preface

1 Introduction

 1.1 Prediction

 1.2 Learning

 1.3 Games

 1.4 A Gentle Start

 1.5 A Note to the Reader

2 Prediction with Expert Advice

 2.1 Weighted Average Prediction

 2.2 An Optimal Bound

 2.3 Bounds That Hold Uniformly over Time

 2.4 An Improvement for Small Losses

 2.5 Forecasters Using the Gradient of the Loss

 2.6 Scaled Losses and Signed Games

 2.7 The Multilinear Forecaster

 2.8 The Exponential Forecaster for Signed Games

 2.9 Simulatable Experts

 2.10 Minimax Regret

 2.11 Discounted Regret

 2.12 Bibliographic Remarks

 2.13 Exercises

3 Tight Bounds for Specific Losses

 3.1 Introduction

 3.2 Follow the Best Expert

 3.3 Exp-concave Loss Functions

 3.4 The Greedy Forecaster

 3.5 The Aggregating Forecaster

 3.6 Mixability for Certain Losses

 3.7 General Lower Bounds

 3.8 Bibliographic Remarks

 3.9 Exercises

4 Randomized Prediction

 4.1 Introduction

 4.2 Weighted Average Forecasters

 4.3 Follow the Perturbed Leader

 4.4 Internal Regret

 4.5 Calibration

 4.6 Generalized Regret

 4.7 Calibration with Checking Rules

 4.8 Bibliographic Remarks

 4.9 Exercises

5 Efficient Forecasters for Large Classes of Experts

 5.1 Introduction

 5.2 Tracking the Best Expert

 5.3 Tree Experts

 5.4 The Shortest Path Problem

 5.5 Tracking the Best of Many Actions

 5.6 Bibliographic Remarks

 5.7 Exercises

6 Prediction with Limited Feedback

 6.1 Introduction

 6.2 Label Efficient Prediction

 6.3 Lower Bounds

 6.4 Partial Monitoring

 6.5 A General Forecaster for Partial Monitoring

 6.6 Hannah Consistency and Partial Monitoring

 6.7 Multi-armed Bandit Problems

 6.8 An Improved Bandit Strategy

 6.9 Lower Bounds for the Bandit Problem

 6.10 How to Select the Best Action

 6.11 Bibliographic Remarks

 6.12 Exercises

7 Prediction and Playing Games

 7.1 Games and Equilibria

 7.2 Minimax Theorems

 7.3 Repeated Two-Player Zero-Sum Games

 7.4 Correlated Equilibrium and Internal Regret

 7.5 Unknown Games: Game-Theoretic Bandits

 7.6 Calibration and Correlated Equilibrium

 7.7 Blackwell's Approachability Theorem

 7.8 Potential-based Approachability

 7.9 Convergence to Nash Equilibria

 7.10 Convergence in Unknown Games

 7.11 Playing Against Opponents That React

 7.12 Bibliographic Remarks

 7.13 Exercises

8 Absolute loss

9 Logarithmic loss

10 Sequential investment

11 Linear pattern recognition

12 Linear classification

Appendix

References

Author Index

Subject Index


作者介绍:

暂无相关内容,正在全力查找中


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

编辑推荐

作者简介:

  Nicolò Cesa-Bianchi is Professor of Computer Science at the University of Milan, Italy. His research interests include learning theory, pattern analysis, and worst-case analysis of algorithms. He is action editor of The Machine Learning Journal. Gábor Lugosi has been working on various problems in pattern classification, nonparametric statistics, statistical learning theory, game theory, probability, and information theory. He is co-author of the monographs, A Probabilistic Theory of Pattern Recognition and Combinatorial Methods of Density Estimation. He has been an associate editor of various journals including The IEEE Transactions of Information Theory, Test, ESAIM: Probability and Statistics and Statistics and Decisions.



书籍真实打分

  • 故事情节:5分

  • 人物塑造:8分

  • 主题深度:5分

  • 文字风格:9分

  • 语言运用:5分

  • 文笔流畅:8分

  • 思想传递:9分

  • 知识深度:6分

  • 知识广度:7分

  • 实用性:9分

  • 章节划分:5分

  • 结构布局:5分

  • 新颖与独特:5分

  • 情感共鸣:6分

  • 引人入胜:9分

  • 现实相关:6分

  • 沉浸感:6分

  • 事实准确性:7分

  • 文化贡献:9分


网站评分

  • 书籍多样性:3分

  • 书籍信息完全性:7分

  • 网站更新速度:8分

  • 使用便利性:4分

  • 书籍清晰度:7分

  • 书籍格式兼容性:8分

  • 是否包含广告:6分

  • 加载速度:9分

  • 安全性:8分

  • 稳定性:9分

  • 搜索功能:8分

  • 下载便捷性:6分


下载点评

  • 推荐购买(308+)
  • 速度快(287+)
  • 差评(399+)
  • 超值(426+)
  • 三星好评(320+)
  • 四星好评(673+)
  • 值得下载(668+)
  • 速度慢(224+)
  • 全格式(236+)

下载评价

  • 网友 益***琴:

    好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。

  • 网友 訾***雰:

    下载速度很快,我选择的是epub格式

  • 网友 谢***灵:

    推荐,啥格式都有

  • 网友 曹***雯:

    为什么许多书都找不到?

  • 网友 冉***兮:

    如果满分一百分,我愿意给你99分,剩下一分怕你骄傲

  • 网友 国***芳:

    五星好评

  • 网友 常***翠:

    哈哈哈哈哈哈

  • 网友 权***波:

    收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!

  • 网友 寿***芳:

    可以在线转化哦

  • 网友 薛***玉:

    就是我想要的!!!

  • 网友 车***波:

    很好,下载出来的内容没有乱码。

  • 网友 濮***彤:

    好棒啊!图书很全

  • 网友 郗***兰:

    网站体验不错


随机推荐